Universitarios investigan nanocúmulos de oro

Nanopartículas de oro

(Agencia Informativa Conacyt).- En el Instituto de Investigaciones en Materiales (IIM) de la Universidad Nacional Autónoma de México (UNAM), existe un grupo de científicos que busca definir las propiedades y geometrías de nanopartículas o cúmulos atómicos.

Liderados por la doctora Marcela Regina Beltrán Sánchez, han logrado establecer colaboraciones internacionales sobre todo con grupos en Estados Unidos y Alemania. En entrevista con la científica, platicó sobre las técnicas y métodos para encontrar las peculiares propiedades cuando la materia es llevada a escala nanométrica.

“Los cúmulos atómicos se forman a partir de cualquier elemento de la tabla periódica. Pueden darse como partículas monometálicas, bimetálicas, de semiconductores o incluso en aleaciones que forman geometrías no observadas en macroescala”, explicó la doctora.

Un nanomaterial, nanopartícula o cúmulo atómico es un material conformado por pocos átomos y que forman geometrías en escala nanométrica, es decir, en tamaños de millonésimas partes de un milímetro.

Cualquier nanomaterial formado de elementos de la tabla periódica tiene un comportamiento muy diferente en la escala nanométrica que en la macroscópica.

Los cúmulos atómicos se forman a partir de cualquier elemento de la tabla periódica. Pueden darse como partículas monometálicas, bimetálicas, de semiconductores o incluso en aleaciones que forman geometrías no observadas en macroescala”, explicó la doctora.

Un nanomaterial, nanopartícula o cúmulo atómico es un material conformado por pocos átomos y que forman geometrías en escala nanométrica, es decir, en tamaños de millonésimas partes de un milímetro.

Cualquier nanomaterial formado de elementos de la tabla periódica tiene un comportamiento muy diferente en la escala nanométrica que en la macroscópica.

En la escala nanométrica es imposible conocer sus propiedades de manera general, ya que, por ejemplo, los metales dejan de comportarse como metales; los materiales magnéticos se comportan de manera diferente, y los materiales nobles, como el oro, dejan de tener esa característica en estas escalas.

Para entender este fenómeno, primeramente debe analizarse el comportamiento electrónico, magnético, físico, químico. Este es determinado fundamentalmente por la geometría intrínseca de los átomos que conforman los materiales.

Cuando se estudia la materia a una nanoescala, las geometrías cambian totalmente convirtiéndose en otras, inclusive sintetizando en geometrías que poseen simetrías que están prohibidas en el estado sólido macroscópico. “Por ejemplo, la simetría 5 que no existe en los materiales cristalinos en bulto; sin embargo, en las nanopartículas es una simetría común”, agregó.

Otra peculiaridad geométrica que se presenta es, por ejemplo, en el caso del oro en cúmulos de tamaños entre tres y 11 átomos, en donde se sintetizan de forma plana o bidimensional. “En cúmulos de oro más grandes, de 28, 38 o 75 átomos, se forman geometrías amorfas. Todo esto les imprime propiedades nuevas dignas de estudio”.

Dentro del mundo nanométrico, existen zonas de tamaños de partículas como la llamada “región no escalable”, en donde cada nanopartícula posee propiedades únicas que dependen del tamaño de la misma. “En la región no escalable, cada átomo cuenta, y añadir o remover uno, cambia por ejemplo sus propiedades magnéticas. Esto nos obliga a estudiar uno por uno los tamaños y las diferentes formas geométricas”, comentó.

En esta área de conocimiento se pueden encontrar fenómenos magnéticos en materiales que en la macroescala no lo son. “Tenemos muy pocos elementos de la tabla periódica que nos dan magnetismo a la macroescala. Sin embargo, en la nanoescala, el níquel, el rodio, el manganeso, entre otros, son magnéticos, e inclusive poseen momentos electrónicos más altos que el hierro, material utilizado en los imanes”, agregó la doctora.